Bites of Foundation Models for Science: Product Manifold Machine Learning for Physics
Talk, Bites of Foundation Models for Science - Physics-inspired representaions, MIT
Particle jets exhibit tree-like structures through stochastic showering and hadronization. The hierarchical nature of these structures aligns naturally with hyperbolic space, a non-Euclidean geometry that captures hierarchy intrinsically. Drawing upon the foundations of geometric learning, we introduce hyperbolic transformer models tailored for tasks relevant to jet analyses, such as classification and representation learning. Through jet embeddings and jet tagging evaluations, our hyperbolic approach outperforms its Euclidean counterparts. These findings underscore the potential of using hyperbolic geometric representations in advancing jet physics analyses.